Conformal Quaternionic Contact Curvature and the Local Sphere Theorem

نویسنده

  • STEFAN IVANOV
چکیده

Abstract. A curvature-type tensor invariant called quaternionic contact (qc) conformal curvature is defined on a qc manifolds in terms of the curvature and torsion of the Biquard connection. The discovered tensor is similar to the Weyl conformal curvature in Riemannian geometry and to the Chern-Moser invariant in CR geometry. It is shown that a qc manifold is locally qc conformal to the standard flat qc structure on the quaternionic Heisenberg group, or equivalently, to the standard 3-sasakian structure on the sphere if and only if the qc conformal curvature vanishes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal Quaternionic Contact Curvature and the Local Sphere Theorem. La Courbure Conforme D’une Structure De Contact Quaternionienne Et Structures Localment Plates

A tensor invariant is defined on a quaternionic contact manifold in terms of the curvature and torsion of the Biquard connection involving derivatives up to third order of the contact form. This tensor, called quaternionic contact conformal curvature, is similar to the Weyl conformal curvature in Riemannian geometry and to the Chern-Moser tensor in CR geometry. It is shown that a quaternionic c...

متن کامل

Explicit Quaternionic Contact Structures and Metrics with Special Holonomy

We construct explicit left invariant quaternionic contact structures on Lie groups with zero and non-zero torsion, and with non-vanishing quaternionic contact conformal curvature tensor, thus showing the existence of quaternionic contact manifolds not locally quaternionic contact conformal to the quaternionic sphere. We present a left invariant quaternionic contact structure on a seven dimensio...

متن کامل

quaternionic contact structures in dimension 7

The conformal infinity of a quaternionic-Kähler metric on a 4n-manifold with boundary is a codimension 3-distribution on the boundary called quaternionic contact. In dimensions 4n− 1 greater than 7, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7, we prove a criterion for quaternionic contact structures to be the...

متن کامل

Structures in Dimension 7

The conformal infinity of a quaternionic-Kähler metric on a 4n-manifold with boundary is a codimension 3-distribution on the boundary called quaternionic contact. In dimensions 4n − 1 greater than 7, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7, we prove a criterion for quaternionic contact structures to be th...

متن کامل

The Sharp Lower Bound of the First Eigenvalue of the Sub-laplacian on a Quaternionic Contact Manifold in Dimension 7

A version of Lichnerowicz’ theorem giving a lower bound of the eigenvalues of the sub-Laplacian under a lower bound on the Sp(1)Sp(1) component of the qc-Ricci curvature on a compact seven dimensional quaternionic contact manifold is established. It is shown that in the case of a seven dimensional compact 3-Sasakian manifold the lower bound is reached if and only if the quaternionic contact man...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008